Picard Iteration Converges Faster than Mann Iteration for a Class of Quasi-contractive Operators

نویسنده

  • VASILE BERINDE
چکیده

In the last three decades many papers have been published on the iterative approximation of fixed points for certain classes of operators, using the Mann and Ishikawa iteration methods, see [4], for a recent survey. These papers were motivated by the fact that, under weaker contractive type conditions, the Picard iteration (or the method of successive approximations), need not converge to the fixed point of the operator in question. However, there exist large classes of operators, as for example that of quasi-contractive type operators introduced in [4, 7, 10, 11], for which not only the Picard iteration, but also the Mann and Ishikawa iterations can be used to approximate the fixed points. In such situations, it is of theoretical and practical importance to compare these methods in order to establish, if possible, which one converges faster. As far as we know, there are only a few papers devoted to this very important numerical problem: the one due to Rhoades [11], in which the Mann and Ishikawa iterations are compared for the class of continuous and nondecreasing functions f : [0,1] → [0,1], and also the author’s papers [1, 3, 5], concerning the Picard and Krasnoselskij iterative procedures in the class of Lipschitzian and generalized pseudocontractive operators. An empirical comparison of Newton, Mann, and Ishikawa iterations over two families of decreasing functions was also reported in [13]. In [4] some conclusions of an empirical numerical study of Krasnoselskij, Mann, and Ishikawa iterations for some Lipschitz strongly pseudocontractive mappings, for which the Picard iteration does not converge, were also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Picard and Mann Iterations for Quasi-contraction Maps

For a class of quasi-contractive operators defined on an arbitrary Banach space, it has been shown that the Picard iteration technique converges faster than the Mann iteration technique. In this paper we make a comparison of the Picard and Mann iterations with respect to their convergence rate for a more general class of operators called quasi-contractions in metrizable topological vector space...

متن کامل

Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators

The purpose of this paper is to introduce a new class of quasi-contractive operators and to show that the most used fixed point iterative methods, that is, the Picard and Mann iterations, are convergent to the unique fixed point. The comparison of these methods with respect to their convergence rate is obtained.

متن کامل

A Comparison of Mann and Ishikawa iterations of quasi-contraction operators

It is generally conjectured that the Mann iteration converges faster than the Ishikawa iteration for any operator defined on an arbitrary closed convex subset of a Banach space. The recent result of Babu et al [1] shows that this conjecture can be proved for a class of quasi-contractive operators called the Zamfirescu operators[10]. In this paper it is shown that the proof can indeed be general...

متن کامل

Strong Convergence of SP Iterative Scheme for Quasi-Contractive Operators

In this paper , we study the strong convergence of SP iterative scheme for quasi-contractive operators in Banach spaces. We show that Picard , Mann , Ishikawa , Noor, new two step and SP iterative schemes are equivalent for quasi-contractive operators. In addition, we show that the rate of convergence of SP iterative scheme is better than the other iterative schemes mentioned above for increasi...

متن کامل

New approximation methods for solving elliptic boundary value problems via Picard-Mann iterative processes with mixed errors

In this paper, we introduce and study a class of new Picard-Mann iterative methods with mixed errors for common fixed points of two different nonexpansive and contraction operators. We also give convergence and stability analysis of the new Picard-Mann iterative approximation and propose numerical examples to show that the new Picard-Mann iteration converges more effectively than the Picard ite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004